Theory of thermal spin-charge coupling in electronic systems
نویسندگان
چکیده
The interplay between spin transport and thermoelectricity offers several novel ways of generating, manipulating, and detecting nonequilibrium spin in a wide range of materials. Here, we formulate a phenomenological model in the spirit of the standard model of electrical spin injection to describe the electronic mechanism coupling charge, spin, and heat transport and employ the model to analyze several different geometries containing ferromagnetic (F) and nonmagnetic (N) regions: F, F/N, and F/N/F junctions, which are subject to thermal gradients. We present analytical formulas for the spin-accumulation and spin-current profiles in those junctions that are valid for both tunnel and transparent (as well as intermediate) contacts. For F/N junctions, we calculate the thermal spin-injection efficiency and the spin-accumulation-induced nonequilibrium thermopower. We find conditions for countering thermal spin effects in the N region with electrical spin injection. This compensating effect should be particularly useful for distinguishing electronic from other mechanisms of spin injection by thermal gradients. For F/N/F junctions, we analyze the differences in the nonequilibrium thermopower (and chemical potentials) for parallel and antiparallel orientations of the F magnetizations, as evidence and a quantitative measure of the spin accumulation in N. Furthermore, we study the Peltier and spin Peltier effects in F/N and F/N/F junctions and present analytical formulas for the heat evolution at the interfaces of isothermal junctions.
منابع مشابه
ادغام الگوی شبکهای هولشتاین - کاندو برای توصیف نظریه ابررساناهای دمای بالا
It is a common knowledge that the formation of electron pairs is a necessary ingredient of any theoretical work describing superconductivity. Thus, finding the mechanism of the formation of the electron pairs is of utmost importance. There are some experiments on high transition temperature superconductors which support the electron-phonon (e-ph) interactions as the pairing mechanism (ARPES),...
متن کاملFirst-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface
First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...
متن کاملFirst-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface
First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...
متن کاملمشخصات پیوندگاههای ابررسانا - فرومغناطیس - ابررسانا با پایانههای ابررسانای یکتایی
We study numerically the electronic heat capacity, spin and charge current in a diffusive Superconductor-Ferromagnetic-Superconductor systems، with singlet superconducting leads and non-uniform ferromagnetic layer. Specially, we focus on ferromagnetic layer with domain wall and conical structures incorporation the spin-active interfaces. We investigate, how the 0-π transition is influenced by n...
متن کاملAntimalarial Activity of some Conjugated Arylhydrazones: Ab Initio Calculation of Nuclear Quadrupole Coupling Constants (NQCC)
“Malaria” is a life-threatening blood disease in tropical regions that spreads by the bite of the Anopheles mosquito. Antimalarial medications are designed to cure or prevent this infection, and prosperous achievements in this area mostly depend on the knowing the drug-receptor interactions and active sites of medicine. This improvement can be achieved through understanding the electronic struc...
متن کامل